
1

Model Transformers for Test Generation from
System Models

M. Busch1, R. Chaparadza1, Z.R. Dai1, A. Hoffmann1, L. Lacmene1, T. Ngwangwen1,
G.C. Ndem1, H. Ogawa2, D. Serbanescu1, I. Schieferdecker1, J. Zander-Nowicka1
1

Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany;
2

Hitachi Central Research
Laboratory Ltd., Japan

Abstract

The early integration of test development into the system development process
becomes more and more important. By doing so, design mistakes and implemen-
tation faults can be detected in an early stage of the system design and imple-
mentation process, i.e. before the newly developed system is shipped to the cus-
tomer. This allows for reducing the overall development time and costs
significantly. This paper reports on results in integrating testing into a model-
based development process. Based on a common MOF-based infrastructure, ini-
tial test are automatically derived from the system models. Subsequently, an ex-
ecutable test code can be automatically generated from the test models and be-
ing applied to the final system for quality assessment.

Keywords
Test modeling, Test generation, UML, U2TP, MDA, MOF

1 Introduction

The Unified Modeling Language (UML) – a widespread visual modeling language that
is standardized by the Object Management Group (OMG) – plays an important role in
OMG's Model Driven Architecture (MDA) approach. According to the MDA, software
development is based on models that are step-wise refined from a platform independent
model (PIM) level describing the pure functioning of a system down to platform-
specific models (PSM) that are targeted to concrete target technologies. The mapping
between models is based on meta-models and done by transformers that read informa-
tion from a source model repository and store the information in a target model reposi-
tory.

A first step towards a better integration of test development into the system develop-
ment process has been taken by [8]. According to this approach, test components are

2

developed in parallel with the system components as soon as the interfaces and the
overall architecture of the system to be developed are defined. However, since the de-
velopers still use another language for system modeling than for test models, there is
still a gap between the system and test development. Further investigations have thus
been done to improve the integration of the test and system development by adopting
the same specification language for system and test modeling.

The new edition of UML (UML 2.0) is very promising to be a common ground for sys-
tem and test models in order to bridge the gap between system and test development.
UML2 is a great improvement of the previous version of UML. In particular, its generic
extension mechanism supporting different UML profiles for different purposes and do-
mains is an ideal basis for better integration of test and system modeling. Since UML2
still suffers from missing concepts for describing test models efficiently, the OMG de-
fined a UML2 testing profile (U2TP) in order to better support the specification of test
models. This UML profile provides particular means for test modeling, i.e. for describ-
ing test objectives and test procedures. As a result, the same language (i.e. UML) can
now be used in order to specify system and test models. This eases the early integration
of test development and system development.

1.1 The UML 2.0 Testing Profile (U2TP)

The Unified Modeling Language (UML) is a graphical language to support the design
and development of complex object-oriented systems. While it is flexible in addressing
the major object-oriented concepts, test specification and testing issues are beyond the
scope of UML version 1.4. In late 2001, the Object Management Group (OMG) issued
a Request for Proposals (RFP) to develop a testing profile for version 2.0 of UML
(UML 2.0). A UML profile is a domain specific extension of UML provided using a
standardized extensibility mechanism.

The UML 2.0 Testing Profile (U2TP) defines testing concepts, including test context,
test case, test component, and verdicts that are commonly used during testing. Behav-
ioral elements from UML 2.0 can be used to specify the dynamic nature of test cases.
These include interactions, state diagrams, and activity diagrams. Additional concepts
for behavior include several types of actions (validation actions, log actions, final ac-
tions, etc.), defaults for managing unexpected behavior, and arbiters for determining the
final verdict for a test case. The definition and handling of test data is supported by
wildcards, data pools, data partitions, data selectors and coding rules. Timers and time
zones are also provided to enable specifications of test cases with appropriate timing
capabilities.

U2TP also contains a standalone meta-model as a separate compliance point. This al-
lows non-UML tools to provide an implementation that is consistent with the UML

 3

based profile. The Eclipse TPTP project [10] currently has implemented this standalone
model as a basis for their test information model.

The UML 2.0 Testing Profile provides a coherent set of extensions to UML 2.0 that
support effective test specification and modeling for black-box testing. This is a signifi-
cant enhancement to UML to support the testing portion of the system development
lifecycle. Meanwhile, the UML 2.0 Testing Profile development has come to its final-
ization and it has become an official standard of the OMG.

1.2 Using MDA Concepts for Test Modeling

According to the MDA approach [9] defined by the OMG, system development starts
with the specification of a platform-independent model (PIM) of the system to be de-
veloped1. This model specifies the correct functioning of the system independently of
platform-specific details which define the implementation and execution of the system
on a target platform later on. Due to this platform-independence, there is just one PIM
needed for several target platforms. The PIM may be refined in several iterative steps.
Once the PIM is finalized, one or more platform-specific models (PSMs) can be derived
by appropriate transformers. This is shown in Figure 1. For each PSM, the appropriate
transformation step adapts the structure and the functionality of the PIM to a specific
target platform. Subsequently, system code for a dedicated target platform can be gen-
erated from each PSM by appropriate transformers.

Please note that all transformation steps between PIM and PSM, and between PSM and
system code can be done automatically or semi-automatically. In the latter case, the de-
rived PSM need to be completed before the next transformation step can be started. De-
pending on the completeness of the PSM-to-system-code transformation, the generated
system code is ready for execution or still needs to be manually completed.

The most benefit from the MDA approach can be taken if a system to be developed
shall be realized by more than one target platform. However, even if there is just one
target platform for the system under development planned for the time being, the MDA
approach enables the flexible and easy on-demand support for further platforms later
on.

1 There is even one more abstract model: the Computational Independent Model (CIM).
However, as experts are still discussing about the abstraction level and the concepts of
CIM, this is not yet considered by us.

4

S
ys

te
m

D
ev

el
op

m
en

t

PIM

System
Code

Platform1

PSM to Code
Transformer1

System
Code

Platformn

…

…
PSM to Code
Transformern

…

…

PIM to PSM Transformern

PSMn
Platformn

PIM to PSM
Transformer1 PSM1

Platform1

Figure 1: MDA-based system modeling

For test modeling, the same abstraction in terms of platform-independent and platform-
specific modeling can be applied as known from system modeling [9]. As shown in Fig-
ure 2, from a platform-independent test model (PIT) several platform-specific test mod-
els (PSTs) can be derived by proper transformers. From each PST, test code can be gen-
erated for the dedicated target platform of the system to be tested and the test execution
platform.

Te
st

D
ev

el
op

m
en

t Test
Code

Platform1

PST to Test Code
Transformer1

Test
Code

Platformn

…

…

PSM to Test Code
Transformern

…

…
PIT to PST Transformern

PSTn
Platformn

PIT to PST
Transformer1

PST1
Platform1PIT

 Figure 2: MDA-based test modeling

It should be noted, that it is not always necessary to have a separate PST for each target
platform of the system under test. If an abstract test language is used (such as TTCN-3
[3]) and the target platforms are quite similar with respect to its overall nature, the final
adaptation to the concrete system’s target platform can be done at test code level by
proper test adapters.

2 The Approach

The basic idea of deriving test models from system models is to reuse the information
about the system to be developed also for developing the test model as the counterpart
to the system. In particular, the following system information can be used for the deri-
vation of test models for black-box testing:

• the structure and configuration of the system to be developed in terms of com-
ponents, interfaces, connected instances, etc.,

 5

• the system behavior externally observable at component ports,

• the type system (in particular user-defined types, e.g. structured types),

• some concrete data values, e.g. used for selecting between branches in the con-
trol flow.

2.1 Overview on Test Derivation Transformers

In order to use the information about the system under test for the derivation of test
models, dedicated transformers are used. As depicted in Figure 3, those transformers
access the system models at platform-independent or platform-specific level and derive
appropriate test models/test model skeletons. A platform-specific test model (PIT) can
be derived from a PIM; a platform-specific test model (PST) can be derived from a
PSM. If the system development provides more than one PSM, several transformers
may be applied to the PSMs in order to derive appropriate PSTs. From each PST, test
code can be generated for each target execution platform of the system to be tested.

S
ys

te
m

D
ev

el
op

m
en

t

PIM

System
Code

Platform1

PSM to Code
Transformer1PIM to PSM

Transformer1 PSM1
Platform1

Te
st

D
ev

el
op

m
en

t

PIT

PIMto PIT
Transformer

System
Code

Platformn

…

…

PSM to Code
Transformern

Test
Code

Platform1

PST to Test Code
Transformer1

Test
Code

Platformn

…

…

PSM to Test Code
Transformern

Test
Execution
against
SUT

…

…

…

PIM to PSM Transformern

PSMn
Platformn

…

PSMto PST
Transformern

…

…
PIT to PST Transformern

PSTn
Platformn

PSMto PST
Transformer1

PIT to PST
Transformer1

PST1
Platform1

Figure 3: Derivation of test models

6

2.2 Why is Testing Useful in Case of Automated Code Generation?

This section gives answers to the question, why testing is useful and needed also if the
system code is derived automatically from the system model (at PIM or PSM level)?
And why it is also useful, if the tests are derived as well from the same model? As to be
seen in Figure 3, the test model and the test code as well as the system model and the
system code are based on the same originating model information stored in the PIM
and/or the PSM(s). However, there are many reasons why testing of the resulting sys-
tem is still needed.

Incomplete System Model

Complex systems are often not modeled with all their details. Sometimes, complex in-
ternal functionality is modeled by single abstract operations since the modeling of com-
plex algorithms would take more effort than implementing them in an appropriate lan-
guage with dedicated features especially designed for this application area.

Since we focus on black-box testing at system level, it is still possible to derive com-
plete tests from such incomplete system models as the complete internal behavior is not
needed for deriving black-box tests. When the tests are executed against the final sys-
tem code, the internal behavior of the system (not modeled in detail) is automatically
implicitly tested (if it is internally needed by the system to produce the output externally
observed by the test system).

Invalid Transformers

In most cases the transformers used for deriving platform-specific models and code are
not validated. They may thus produce malformed models or code. This will be detected
during testing the final generated system code. This is one major reason why testing is
still needed even if the source (system) model for system code and test code is the same
one.

Incomplete or Parameterized Transformers

Transformers may not be complete, i.e. sometimes they produce model or code skele-
tons that need to be manually refined and/or completed. Thus, at a later stage of the sys-
tem development, the system models (at PSM or code level) need to be completed.
Whether the refined or completed models or system code behave as expected or not,
will be checked by executing the test code against the final system code.

If the transformers at the system development side are parameterised, further informa-
tion is added during the transformation steps (i.e. selection of options). When testing
the system code, it will be checked by the test system, whether those
model/transformation changes done by the parameter input/selection break the final
system or not.

 7

Changes at Code Level

As mentioned in section 0, particular complex functionality may be needed to be added
at code level if the system model does not cover all details required for the system im-
plementation. Also, as pointed out in section 0, if the transformers used do not produce
complete system code, the generated code needs to be completed. This modi-
fied/completed code must be tested in order to make sure that it behaves like expected.

Even in the case that the model and the code transformers are complete and correct, it
may happen that some hand-made changes are done at code level. One reason for this
could be to improve the performance. This is another reason why the final system code
needs to be tested finally by the test system.

Execution on Real Target Environment

Once the system code is generated from the PSM, it is executed in a concrete target en-
vironment. During the system execution, a lot of code is executed that was not modeled
(in detail) in the PIM and the appropriate PSMs, such as

• external system or application framework libraries, middleware libraries, etc.,
and

• operating system functionality.

This external code used by the system code may be malformed and not behave as ex-
pected. One reason for this could be incompatibilities between different library ver-
sions. As a result, the system code may not behave in the actual target environment as
expected and modeled.

Another source of unexpected behavior during execution of the system code in the con-
crete target environment is the sharing of resources between different parallel clients or
components of different instances of the system to be tested or of other applications
(being not part of the model). This shared resource usage may lead to serialization of
actions originally intended to run in parallel (e.g. serialized due to semaphores). This
may break the systems functionality. In the worst case, this interference between differ-
ent instances or other applications due to joint resource usage may lead to deadlock
situations.

2.3 The Tool Chain

Figure 4 provides an overview on the entire tool chain. The upper part of the diagram
shows the tool chain used for the system development. Since UML 2 as a whole is too
broad and it has a less precisely semantic definition (when it shall be used for automatic
transformation or code generation), a subset of UML 2 has been defined together with a
specialized clear semantics. This subset is called eUML (essential UML). eUML comes

8

with a metamodel which formally defines the modelling elements and their relations.
The eUML language concentrates on the most important 5 diagram types out of the 13
diagram types supported by UML 2. These diagrams include structure diagrams, activ-
ity diagrams and package diagrams as the most important elements.

eUML is extended into the essential Test Modelling Language (eTML) providing con-
cepts needed for test modelling. For eTML, a subset of the most important U2TP con-
cepts has been chosen. Table 1 presents those concepts being grouped into2:

• Test architecture, defining concepts related to test structure and test configura-
tion, i.e. the elements and their relationships involved in a test,

• Test behaviour, defining concepts related to the dynamic aspects of test proce-
dures and addressing observations and activities during a test,

• Test data, defining concepts for test data used in test procedures, i.e. the struc-
tures and meaning of values to be processed in a test, and

• Time, defining concepts for a time quantified definition of test procedures, i.e.
the time constraints and time observation for test execution.

eTML is used for PIT models, while TTCN-3 (the Testing and Test Control Notation
[3]) is used for PST models. TTCN-3 has been chosen because of its abilities to support
the automated generation of executable tests for different target technologies. In addi-
tion, TTCN-3 tests can be executed locally or remotely also in a distributed manner.
This capability of TTCN-3 to execute tests on different platform, for different pro-
gramming language under different operating systems is in particular valuable for a
generic development approach starting with platform-independent models in UML.

Test architecture concepts Behavior concepts Data concepts Time concepts
SUT Test case Wildcards Timer
Test components Defaults Data pools
Test context Verdicts Data partitions
Test configuration Data selectors
Test control

Table 1: The eTML Concepts

eUML models are developed and edited with an eUML add-in for Enterprise Architect
[5]. Enterprise Architect (EA) is a graphical UML2 tool that (partially) supports the
profiling mechanism of UML2. It is also the graphical front-end tool for eTML.

2 For further details please refer to [11].

 9

An eUML specification is stored in a Medini [4] repository and is the starting point for
deriving test models. The test models are also stored in a Medini repository: an eTML
repository for PIT models and a TTCN-3 repository for PST models. One advantage of
Medini repositories is that they can be remotely accessed by transformers via CORBA.

With eUML and eTML being dialects of UML2, the system developer and the test de-
veloper can use the same base language. Since Enterprise Architect is used for both
modeling system models and test models on platform-independent or platform-specific
level, the developers can even use the same tools with the same GUI for viewing and
editing system and test models.

Figure 4: Overview on the tool chain

The Medini Transformer Generator (MTG [4]) is an engine to produce meta-model spe-
cific transformer skeletons, which allow for half automated implementation of trans-
formation rules. The generated transformer skeletons provide proper means to read the
source repository as starting point for the transformation and to store the new model as
a result of the transformation step in the target repository via CORBA. The transformer
skeletons contain operations signatures that need to be implemented by the transformer
developer in order to implement the transformation rules. It has been used to develop
the transformers from PIM to PIT and from PIT to PST. The transformation between

10

the PST in TTCN-3 and the test code in Java is done by the TTCN-3 compiler of
TTworkbench [6].

TTworkbench is a TTCN-3 based integratede development environment (IDE) provid-
ing various capabilities for test development and test execution which are integrated in
the Eclipse platform. In particular, the Core Language Editor for TTCN-3 is used to
visualize and potentially modify the generated TTCN-3 test models. The TTCN-3 com-
piler is used to generate Java test code that can be executed with the test management
and test execution tool TTman being also part of TTworkbench. In result, the tests be-
ing derived from system models and potentially further refined on PIT, PST and/or test
code level are finally automatically being executed and applied to the system resulting
from the system development process.

2.4 Selected Transformation Rules

This section presents selected transformation rules between eUML and eTML. It uses a
Pizza Shop example, where pizza can be selected and ordered by customers. For the
derivation of eTML diagrams from eUML diagrams, all eUML elements will be
adopted to an eTML model first. Since eTML concepts inherit from eUML concepts, all
eUML elements are valid eTML elements.

Transformation Rule 1. All elements of the eUML model become the start-

ing point for the eTML model.

The following transformation rules are about the generation of the basic test system
architecture consisting of package and test contexts.

Transformation Rule 2. An overall test package is created in parallel to the

system model. This test package is named “TestPackagesDiagram”.

Figure 5 shows an example of an overall test package listing the names of its test con-
text classes.

 11

Figure 5: Creating Test Model Package

Transformation Rule 3. Create a package inside the test package. Name this

package according to “UMLComponentLevelTests_package”. For each test-
able UMLClass, a package must be created inside the overall test pack-
age/SystemNameSuite.

Transformation Rule 4. A class stereotyped with <<TestContext>> must be
created inside the UMLComponentLevelTests_package. The names of the test
context classes are “UMLClassNameTestContextPackage”.

Figure 6 shows the Package PizzaShopSuites with a Class PizzaService inside, which is
stereotyped by <<TestContext>>.

Figure 6. Test Contexts Created for the Pizza-shop Example

Transformation Rule 5. A test configuration for a TestContext is derived

from a composite structure diagram if it exists. Herefore, a deployment class
must be created, which references to the name of the composite structure dia-
gram (test configuration) for the TestContext.

12

Transformation Rule 6. The test configuration and the Deployment class as-
sociated with the TestContext must be put into the respective package of the
TestContext.

Transformation Rule 7. The SUT is derived both from a class or a part. A
UML class is considered testable if any of its ports provides an interface,
through which operation calls can be accepted by this class, i.e. the class pro-
vides services via the interface and one of the interface's operations either re-
turns a value or raises an exception. This also applies to a UML part.

Transformation Rule 8. Test components are derived both from a class or a
part. A Test component emulates an entity/component in the system. There-
fore, it inherits the system model class from which it is derived in order to get
the attributes of the class being emulated.

Figure 7: Test Configuration Composite Structure Diagram

In Figure 7, the adopted test configuration is shown. It is a Composite Structure Dia-
gram which has been adopted from the Composite Structure diagram on which the
UMLClass exists. In this configuration, the CustomerEmulator and the DelivererEmu-
lator are test components while the PizzaService is assigned to the role of an SUT.

Transformation Rule 9. Traverse the classes of test configuration assigning
for each of them <<TestComponent>> or <<SUT>> stereotypes appropriately

 13

so that more Composite Structure Diagrams can be obtained (if needed). The
Algorithm of assigning the <<SUT>> stereotype is based on checking if a
class is testable.

Transformation Rule 10. Each testable class must create a class stereotyped
with <<TestContext>> inside their respective TestContext packages. The num-
ber of TestContexts depends on and is equal to the number of testable classes
found.

Figure 8: Test Package with different Test Context Classes

Figure 8 presents the test Package with different test contexts inside depending on the
potential test configuration. The class on the left side corresponds to the test configura-
tion with SUT being the PizzaService, while the class on the right side corresponds to
the test configuration with SUT being the Deliverer.

A test context defines various test artifacts: attributes, operations, test components, test
configuration and test control. Test cases are listed as operations within the test context
with verdict as return value. A test context is related to its incorporated test configura-
tion and all test cases which are listed in a test context use the same test configuration.
Therefore, for each new test configuration, a new test context is needed.

Every system component that is testable has a test context generated for it. For that, the
system components are assigned according to their roles, i.e. SUT or test component.

14

That means that each system component can be either SUT or test component. For each
rotation of the role assignment, the test configuration must be changed. Thus a new test
context package must also be created.

Transformation Rule 11. Additional classes have to be created (for each

class/part stereotyped with <<TestComponent>> in the Composite Structure
Diagram). Those classes inherit from the appropriate classes from the system
model. Name these classes according to the rule “ClassNameEmula-
tor_TestComp” where ClassName is the name of the class coming from system
model. In this case, ClassNameEmulator inherits from the ClassName.

Figure 9: TestComponents in the Test Package

Figure 9 shows two test component classes with ports and their interfaces.

Further transformation rules are needed to complete the mapping from eUML to eTML.
Another set of transformations have been defined from eTML to TTCN-3. However,
due to lack of space only a selection of transformation rules can be presented here.

3 Results and Summary

This paper discusses model-based testing in the context of MDA and appropriate test
languages used for test modeling on platform-independent and platform-specific level.
A tool chain to support the activities along model-based testing is presented.

Beginning from PIM and PSM on the system side, PIT and PST are used on the test
side. Different approaches to the derivation of test model from the system model are
given. The usefulness of test generation from system models where also the system
code is derived from is discussed.

 15

Two modeling languages are used for test models: the essential Test Modelling Lan-
guage eTML (being a subset of the UML 2.0 Testing Profile) and the Testing and Test
Control Notation TTCN-3. The execution of the resulting tests is being done via the
TTCN-3 platform TTworkbench together with test adapters for EJB and WSDL. This
enables us to execute tests automatically for J2EE and WS based systems.

The developed concepts have been applied with the tool chain to e are applied in prac-
tice by examples such as the Pizza Shop example. This has been modeled in eUML and
tests both in eTML and TTCN-3 are derived. The tests are finally applied to a pizza
shop implementation and revealed some errors.

Further work will consist of extending the transformation rules to other additional UML
diagrams and to add user control to the model transformers so as to give the user more
control to the test generation process.

References

[1] OMG ptc/04-05-02: UML 2.0 Superstructure Specification.
[2] OMG ptc/2004-04-02: UML 2.0 Testing Profile, Final Adopted Specification.
[3] ETSI ES 201 873, v3.1.1: The Testing and Test Control Notation TTCN-3, Standard series, June 2005.
[4] IKV++ Technologies’ Medini: www.ikv.de.
[5] Sparx Systems Enterprise Architect: http://www.sparxsystems.com.
[6] Testing Technologies’ TTworkbench: www.testingtech.de.
[7] The Hitachi/FOKUS ModTest Project: Model Based Testing Final Report, March 06.
[8] M. Born, I. Schieferdecker, O. Kath and C. Hirai: Combining System Development and System Test in

a Model-centric Approach, RISE 2004 International Workshop on Rapid Integration of Software Engi-
neering techniques, November 26, 2004, Luxembourg, Springer LNCS.

[9] OMG: Model Driven Architecture, http://www.omg.org/mda/.
[10] Eclipse: The Test & Performance Tools Platform (TPTP): http://www.eclipse.org/tptp/
[11] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, S. Lucio, E. Samuelsson, I. Schieferdecker, and C. Wil-

liams: The UML 2.0 Testing Profile, Conquest 2004, ASQF Press, September 2004, Nuremberg, Ger-
many.

[12] G. Caplat, J.L. Sourouille: Considerations about Model Mapping, Workshop in Software Model Engi-
neering Oct. 2003, San Francisco, USA, http://www.metamodel.com/wisme-2003/18.pdf.

Presenter’s biographies

Due to the number of authors we limit the biographies to the presenter only.

Andreas Hoffmann

Andreas Hoffmann has received his Master's degree in Computer Science from the
Humboldt University of Berlin in 1997. Before graduating, he was a member of a pro-
ject team that developing design tools for distributed applications at FOKUS. Since
1997, he is scientist at FOKUS and has worked in the area of distributed telecommuni-
cation systems and modeling and testing thereof. Currently, he is leading the test solu-

16

tions group at FOKUS. He is also a member of OMG ADTF and IMS Benchmarking
SIG.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

